Trivariate polynomial approximation on Lissajous curves
نویسندگان
چکیده
منابع مشابه
Trivariate polynomial approximation on Lissajous curves ∗
We study Lissajous curves in the 3-cube that generate algebraic cubature formulas on a special family of rank-1 Chebyshev lattices. These formulas are used to construct trivariate hyperinterpolation polynomials via a single 1-d Fast Chebyshev Transform (by the Chebfun package), and to compute discrete extremal sets of Fekete and Leja type for trivariate polynomial interpolation. Applications co...
متن کاملSpectral filtering for the reduction of the Gibbs phenomenon for polynomial approximation methods on Lissajous curves with applications in MPI
Polynomial interpolation and approximation methods on sampling points along Lissajous curves using Chebyshev series is an effective way for a fast image reconstruction in Magnetic Particle Imaging. Due to the nature of spectral methods, a Gibbs phenomenon occurs in the reconstructed image if the underlying function has discontinuities. A possible solution for this problem are spectral filtering...
متن کاملMultivariate polynomial interpolation on Lissajous-Chebyshev nodes
In this contribution, we study multivariate polynomial interpolation and quadrature rules on non-tensor product node sets linked to Lissajous curves and Chebyshev varieties. After classifying multivariate Lissajous curves and the interpolation nodes related to these curves, we derive a discrete orthogonality structure on these node sets. Using this discrete orthogonality structure, we can deriv...
متن کاملHigh order approximation of rational curves by polynomial curves
We show that many rational parametric curves can be interpolated, in a Hermite sense, by polynomial curves whose degree, relative to the number of data being interpolated, is lower than usual. The construction unifies and generalizes the families of circle and conic approximations of Lyche and Mørken and the author in which the approximation order is twice the degree of the polynomial.
متن کاملTrivariate C Polynomial Macro-Elements
Trivariate C macro-elements defined in terms of polynomials of degree 8r + 1 on tetrahedra are analyzed. For r = 1, 2, these spaces reduce to well-known macro-element spaces used in data fitting and in the finite-element method. We determine the dimension of these spaces, and describe stable local minimal determining sets and nodal minimal determining sets. We also show that the spaces approxim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IMA Journal of Numerical Analysis
سال: 2016
ISSN: 0272-4979,1464-3642
DOI: 10.1093/imanum/drw013